
Quantum chaos in the nuclear collective model. II. Peres lattices

Pavel Stránský, Petr Hruška, and Pavel Cejnar
Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2,

180 00 Prague, Czech Republic
�Received 1 December 2008; published 2 June 2009�

This is a continuation of our paper �Phys. Rev. E 79, 046202 �2009�� devoted to signatures of quantum
chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and
disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen
observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides
an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.
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I. INTRODUCTION

In the previous part of this paper �1� �Part I�, we have
analyzed the correspondence between classical and quantum
signatures of chaos in the geometric collective model �GCM�
�2� of nuclear vibrations. Rotations were ruled out by the
constraint of zero angular momentum. The classical version
of this model was previously shown �3� to exhibit a very
complex dependence of regular and chaotic measures on
control parameters and energy.

In Part I �1�, we have compared the classical measure f reg,
a regular fraction of the phase-space volume, with the ad-
junct �1−�� of the Brody parameter. The analysis of spectra
was performed in a wide energy domain and for several val-
ues of the control parameter B of the GCM Hamiltonian.
Spectra obtained via different quantization schemes of the
classical model were considered, which led to the use of
three different sets of quantum levels, denoted as 5D, 2D
even, and 2D odd. Whereas the 5D spectrum corresponds to
the standard five-dimensional GCM restricted to the nonro-
tating case, the 2D even and 2D odd spectra were derived
from the quantization in the two-dimensional space of polar
deformation coordinates � and �, with the respective condi-
tion on the parity of wave functions under the reflection of
angle �.

In all cases, the validity of the Bohigas conjecture �4� has
been fully confirmed. We stressed two important aspects of
our calculation: First, Bohigas’ conjecture has been verified
independently of the quantization scheme. Second, because
of the strong dependence of the GCM chaotic measures on
energy, the competing types of level statistics have been ana-
lyzed in the local regime, i.e., for separate portions of the
spectrum. Whether the statistics in a given portion is more of
the Poisson or Wigner type depends on the character �regular
or chaotic, respectively� of the classical dynamics in the cor-
responding energy interval. The nonmonotonous dependence
of chaotic measures on energy is in contrast to a majority of
systems used as case examples of chaos, in particular to all
kinds of billiards �or cavities� for which the chaotic features
are energy independent.

In this part of the contribution, we continue the work
initiated in Part I by considering more sophisticated tech-
niques to describe chaos in quantum spectra. Given that the
Brody parameter captures only the short-range spectral cor-
relations, a natural way to extend the previous results would

be to consider also some measures of the long-range corre-
lations, such as, e.g., the �3 statistics or the number variance
�2 �5�. This way we did not follow. The reason is connected
with the above-mentioned nontrivial variation in chaotic
measures with energy, which would unavoidably increase
statistical ambiguity of such analyses.

Instead, we employed the method invented in 1984 by
Peres �6�. While Bohigas’ conjecture, which was published
in the same year �4�, has become a widely recognized para-
digm of quantum chaos, Peres’ method has been more or less
forgotten. It is mentioned in the textbook �7�, where some
applications in integrable and nonintegrable spin systems are
discussed �8�. An application in a billiard system was pre-
sented later �9�. Today, however, Peres’ name is more com-
monly cited in connection with his alternative definition of
chaos in quantum systems �10�, submitted and published
with a difference of just few days, which became a corner-
stone for presently a quickly expanding branch of the quan-
tum information theory �11�.

Nevertheless, the idea of Ref. �6� turns out to be very
fruitful, as well. We will show below that the method based
on this idea represents a sensitive probe into the competition
between regular and chaotic features in quantum spectra. It
can be applied even beyond the theory of quantum chaos, as
a synoptical indicator of the changing structures across the
spectrum containing possibly a very large number of states.
In the two-dimensional case, the method is graphical and
may be compared to the classical method of Poincaré sec-
tions. The spectrum of stationary states of a given quantum
system with two degrees of freedom is drawn as a lattice in
the plane E� �P�, where E is energy and �P� stands for an
arbitrary observable average. This allows one to recognize
ordered and disordered patterns and visually allocate regular
and chaotic domains within the same energy interval. The
freedom in choosing observable P makes it possible to focus
on various properties of individual states and to closely fol-
low the way how chaos sets in and proliferates in the system.

The plan of the present paper is the following: Peres’
method is introduced in Sec. II and elaborated for the geo-
metric model in Sec. III. Section IV shows Peres lattices
calculated with two choices of operator P for different values
of control parameters and different quantizations. Discussion
of these results and their comparison with results of Part I are
presented. The summary and conclusions come in Sec. V.
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II. PERES METHOD

Let us consider an integrable system with two degrees of
freedom �a 2D system�. Apart from the Hamiltonian H0,
there must exist another integral of motion, denote it I, which
by definition satisfies the commutation relation �H0 , I�=0. If
we plot the eigenvalues Ii of observable I against energies Ei
for individual levels �enumerated by integer i=0,1 ,2 , . . .�,
the resulting image is formed by a lattice of regularly distrib-
uted points. This is a straightforward consequence of the
semiclassical quantization by Einstein, Brillouin, and Keller

�EBK� �12�. An example of such a regular lattice is shown in
panel �a� of Fig. 1, with H0 and I described in Sec. III. In the
present section we focus on the left column of the figure until
specified otherwise.

The kind of lattice described above is commonly used to
analyze some analytic aspects of quantum integrable sys-
tems, see, e.g., Ref. �13�. In the present context, it is a natural
starting point for the explanation of the Peres method. To
continue, we introduce a perturbation H� to the integrable
Hamiltonian H0, which yields a nonintegrable Hamiltonian
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FIG. 1. Peres lattices for J=0 eigenstates of the geometric collective model in the “2D even” quantization �see Sec. III�. The points
represent individual eigenstates with coordinates Ei �energy� and �P�i �expectation value of the respective Peres operator�. Two Peres
operators, L2 and H�, are employed, the results shown in the left and right columns, respectively. Row �a� corresponds to the fully integrable
case, B=0. Rows �b�–�d� depict the disturbance of the lattice with gradually increasing nonintegrable perturbation until reaching the most
chaotic case, B=0.24 �e�. All quantities are given in relative units, �=5�10−3.
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H = H0 + �H�, �1�

with � standing for a real number measuring the strength of
the perturbation. Obviously, I does not commute with H
since �H� , I��0 in general, hence I is not any more an inte-
gral of motions. Consequently, the Hamiltonian eigenstates
�	i� are characterized by energies Ei, but not by fixed values
Ii of observable I. If we want to continue with the 2D visu-
alization of the spectrum as introduced above for �=0, the
question raises what to draw on the vertical axis instead of
Ii? Quite naturally, Peres has chosen the expectation values
�I�i= �	i�I�	i� of observable I in individual eigenstates. This
choice smoothly connects the perturbed ���0� and the un-
perturbed ��=0� cases since �I�i→ Ii for �→0.

Such lattices are shown in panels �b�–�e� of Fig. 1 �left�,
where the general parameter � from Eq. �1� is replaced by
the model-specific parameter B; see Sec. III. As can be seen
in panels �b�–�d�, adding a small perturbation to the inte-
grable Hamiltonian does not instantaneously break down the
entire regular lattice. Instead, some localized seeds of distor-
tion are created, while the rest of the lattice remains ordered
in the same fashion as in the integrable case. This scenario is
in accordance with Percival’s conjecture �14� assuming that
the sets of regular and chaotic eigenstates are statistically
independent in the semiclassical limit �→0, i.e., they do not
interact with each other. Therefore, the persisting regular
parts of the lattice can be associated with surviving remnants
of classical tori, while the disordered parts correspond to
proliferating chaotic orbits.

As the perturbation strength � grows, the remnants of tori
are gradually disappearing and disorder tends to increasingly
plague the lattice. This is demonstrated by an almost totally
disordered lattice in panel �e� of Fig. 1, where only a few low
lying states keep the regular pattern.

The above-outlined visual method implies a great heuris-
tic gain. It allows one to judge which parts of a mixed spec-
trum �or, in optimal cases, which individual states� are regu-
lar and which are chaotic. Let us stress that this is opposite to
traditional methods of quantum chaos based on the spectral
statistics since in that case regular and chaotic �or mixed�
parts of the spectrum can only be specified by energy. In the
present approach, these parts can coexist within the same
energy interval, the additional information needed for their
separation being obtained from the behavior of the averages
�I�i.

In practice, there certainly exist severe limitations in the
ability to distinguish from each other the regular and chaotic
patterns in a finite lattice. The identification of these patterns
is further obscured by the fact that they may be superim-
posed on each other �as shown below�. It should be stressed
that the Peres’ method is not quantitative—it does not yield
�at least not directly� a calculable measure of quantum chaos
which could be compared with other measures such as, e.g.,
the Brody parameter.

In spite of these limitations, however, the method has a
great potential to disclose important features of the mecha-
nisms governing the breakdown of integrability and rise of
chaos in low-dimensional systems. Its great advantage is that
the structural information on individual eigenstates is repre-

sented by a single variable �the average of a suitably chosen
observable�, which allows one to use a simple visualization
technique incorporating simultaneously a large number of
states. Note that in higher than 2D cases, the spectral lattice
would have to be drawn in a multidimensional space, which
would require to develop a sophisticated computer software
for pattern recognition. Here, as we only deal with two-
dimensional systems, the most efficient software is that al-
ready built in the human brain.

Peres originally introduced his method in a more general
way. He started from the simple fact that the time average of
an arbitrary classical observable is a trivial integral of motion
�similarly as any function in the phase space which assigns a
constant value to all points of the same trajectory�. This
makes it possible, for an arbitrary system, to create an un-
limited number of integrals of motion. Of course, this does
not alter the fact that the system is nonintegrable, in general.
Indeed, the functions corresponding to the new integrals are
singular in the chaotic part of the phase space, hence they do
not generally allow one to construct a transformation to the
action-angle variables. Nevertheless, the dependence of time
averages represents an interesting probe into the system’s
dynamics at given energy.

The time averaging can be applied in quantum mechanics,
as well. Let us take an arbitrary Hermitian operator P,
which in the present context will be called Peres

operator. One can construct an operator P̄ associated with
the time average of quantity P. This operator has the prop-
erty that the time-averaged expectation value �P��	�0��
=limT→


1
T�0

T�	�t��P�	�t��dt for an arbitrary initial state

�	�0�� can be calculated as �P��	�0��= �	�0��P̄�	�0��. The op-

erator P̄ is readily obtained from the Heisenberg image PH�t�
of P through

P̄ = lim
T→


1

T
	

0

T

PH�t�dt . �2�

It is now straightforward to see that P̄ fulfills the commuta-

tion relations �H , P̄�=0, hence is an integral of motion.
Peres showed that in an integrable system the set of points

Ei versus P̄i �where P̄i is a fixed value of P̄ in the ith eigen-
state� forms a smoothly deformed regular lattice. This is so
irrespective of the choice of the operator P used for evaluat-
ing the averages. Even if we choose an observable P which
is not an integral of motion, P� I, the corresponding lattice
for an integrable system will be ordered. The proof makes
use of the EBK quantization and the fact that in an integrable

system any additional integral of motion �including P̄� must

be a function of the actions �for an integrable system, P̄ is
constant on the phase-space tori�. Therefore, any distortion
of regularity of the lattice signals the onset of chaotic
motions.

The expressions P̄i and �P�i yield the same values and can
be interchanged. We call these values P averages, while the
set of points Ei versus �P�i for an arbitrary �integrable or
nonintegrable� Hamiltonian is denoted here as the Peres lat-
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tice. Note that in Refs. �7,9�, a more pictorial term “quantum
web” was proposed.

We want to stress that there is no restriction in the choice
of the Peres operator P. Different choices give different lat-
tices, but the separation of levels into regular and chaotic
parts of the lattice is independent of the choice. This conse-
quence of the Percival conjecture will be discussed below. It
is illustrated in Fig. 1, where the right-hand column shows
lattices for another Peres operator than that used in the left-
hand column. The rows correspond to the same values of the
perturbation strength. We observe that the overall degree of
chaos in each adjacent pair of images is about the same.
Moreover, it can be shown �cf. Fig. 2� that the states allo-
cated in the regular �chaotic� part of one lattice lie in the
regular �chaotic� part of the other lattice, as well. �Note that
illusive differences in the numbers of points on both sides of
Fig. 1 �and some of the forthcoming figures� are caused by
eventual accumulation of multiple points with very close co-
ordinates.�

III. HAMILTONIAN AND PERES OPERATORS

In this section we briefly introduce the Hamiltonian of the
geometric collective model of atomic nuclei �2� in a nonro-
tating regime and suitable Peres operators. The model has
been discussed in Part I �1�. The GCM Hamiltonian H=H0
+BH� consists of the integrable part,

H0 = T − �2 + �4 �3�

and a nonintegrable perturbation,

H� = �3 cos 3� , �4�

where polar coordinates � and � stand for dynamical vari-
ables �shape parameters� and T is the kinetic energy, which
involves the associated momenta �1�. The corresponding
Cartesian coordinates read as �x ,y�= �� cos � ,� sin ��, with

the momenta transformed accordingly. Parameter B is the
perturbation strength, a model-specific version of the above-
introduced general variable �. This choice corresponds to the
GCM potential V=A�2+B�3 cos 3�+C�4 �1� with �A ,C�
= �−1,+1�. As C is positive, the Hamiltonian for any energy
E describes motions confined within a finite domain of �.
The three degenerate global minima of the potential V are
located at ��0, �= �

3 or 0 �for B�0 or 0, respectively�,
and a single local maximum is at �=0. As in Part I, all
quantities are considered dimensionless.

We take into account two different and physically relevant
quantization schemes, which are connected with two- and
five-dimensional versions of the system �hereafter referred to
as 2D and 5D cases, respectively� �1�. The kinetic term T is
different for both schemes, nevertheless in both cases it is
proportional to the squared Planck constant over 2K, where
K stands for an effective-mass parameter of the system. The
fraction �=�2 /K is called the classicality parameter. The
value of this parameter adjusts the absolute density of quan-
tum spectra. In the following we set K=1 and vary the value
of �. The diagonalization of the Hamiltonian is performed in
the appropriate 2D or 5D harmonic-oscillator bases. The 2D
case is further split to even and odd case, referring to the
symmetry or antisymmetry with respect to the �→−� inver-
sion.

A set of eigenenergies and eigenvectors is obtained, for
which the Peres lattice is constructed. We consider two types
of the Peres operator. The first one is identified with the
square of the angular-momentum operator L connected with
the rotations varying angle �. In the 2D case, this is the
Casimir invariant of the O�2� algebra of rotations in the
�� ,�� plane,

L2D
2 = �2 �2

��2 � �2m2, m = 0,3,6, . . . , �5�

cf. Eq. �7� of Ref. �1�. Note that the L2D
2 eigenvalues, indi-

cated in the last equation, involve multiples of 3 due to the
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FIG. 2. Peres lattices of the GCM at B=0.62 with averages of L2 �left� and H� �right� for 2D even �row a� and 5D �row b� quantizations
��=5�10−3�. In row �a�, three states denoted by full symbols are identified in both lattices, demonstrating that the assignment of a given
state to a regular or chaotic part of the lattice does not depend on the choice of the Peres operator.
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required symmetry of the eigenfunctions with respect to ro-
tations about angle 2� /3 �1�. In the 5D case, L2 is the Ca-
simir invariant of the GCM algebra O�5� �15� restricted to
value J=0 of the O�3� angular momentum �null rotations in
the ordinary space�. We have

L5D
2 =

�2

sin 3�

�

��
sin 3�

�

��
� �2v�v + 3� ,

v = 0,3,6, . . . , �6�

cf. Eq. �5� of Ref. �1�. The eigenvalues of this operator are
enumerated by an integer v �in the nuclear context called
seniority�, which for J=0 again has only the values equal to
multiples of 3 �15�.

For the Hamiltonian eigenstates, L2D
2 and L5D

2 take the
values from Eqs. �5� and �6�, respectively, only for B=0, in
which case the L2 operators commute with the Hamiltonian.
For B�0, the energy eigenstates �i�� ,�� are mixtures of
states with different values of m or v. In any case, the aver-
age �L2�i quantifies oscillations of the wave functions �i in
the direction of angle � �examples shown below�.

The second Peres operator used in our analysis is identi-
fied with the perturbation H� from Eq. �4�. It is worth noting
that the expectation value of H� in an eigenstate �	i� of the
general Hamiltonian �1� coincides with the derivative dEi /d�
of the ith energy level at the given value of the control pa-
rameter. In the present case, the angular part of the H0 eigen-
states has the property that �cos 3��i=0, hence

�H��i�B=0 = 
dEi

dB



B=0
= 0 �7�

�see the upper right panel of Fig. 1�. The vanishing slope at
B=0 is consistent with the symmetry of the spectrum Ei�B�
under the reflection B�−B. If B�0, however, the average is
generally nonzero and satisfies �H��i= �Ei− �H0�i� /B. The dis-
turbances in the P=H� lattice therefore show up as depar-
tures of individual points from the line �H��i=0, as seen in
the right-hand column of Fig. 1. This facilitates the visual
inspection of results.

IV. RESULTS AND DISCUSSION

A. Comparison of Peres lattices

The effects accompanying the decay of regularity in Peres
lattices were discussed from a general viewpoint in Sec. II.
Figure 1, which corresponds to the GCM in the 2D even
quantization with the above two choices of the Peres opera-
tor, illustrates the gradual transition from ordered to disor-
dered lattices. Note that the case B=0.24 depicted in row �e�
corresponds to the minimum of the classical regular fraction
f reg, see Part I �1�. The gradual onset of chaos in these lat-
tices will be analyzed in more details in Sec. IV C.

In Fig. 2 we compare Peres lattices obtained �for both
Peres operators� in the 2D even and 5D quantizations. The
value B=0.62 belongs to the island of strongly pronounced
regularity close to the resonance of � and � vibrations; see
Sec. IV D. The regularity shows up as a large area of ordered
points, which starts at the lowest negative energies and
spreads over to positive energies, where it is joined by a
rising chaotic area. Despite the spectra for different quanti-
zations show significant differences �1�, the form of Peres
lattices is rather similar.

In order to demonstrate the coincidence of the regular and
chaotic regions in the lattices for different Peres operators,
we have highlighted three of the states in the first row of Fig.
2, marking them by a square, a bullet, and a diamond. Prob-
ability densities for the corresponding wave functions are
depicted in Fig. 3. The wave functions as well as the location
of the respective points in the Peres lattice show that the
square and the diamond correspond to regular states, while
the bullet represents a chaotic state. In Fig. 2�a� we see that
this assignment is consistent for both choices of the Peres
operator. Let us note that both regular levels �a� and �c� in
Fig. 3 exhibit a large increase in the wave-function magni-
tude in a region where a certain periodic trajectory oscillates
in the classical case �16�.

Although, as emphasized above, we can choose an arbi-
trary operator for plotting the Peres lattice, Fig. 2 indicates
that some operators may be more suitable than others. For
some choices, a part of the regular region in the lattice can
pervade into the chaotic area and hide there behind a disor-
dered mesh of points. In such cases, one cannot decide
whether a level inside a chaotic region is indeed chaotic. �On

-1 0 1 -1 0 1
x

-1 0 1

1

0

-1

y

(a) (b) (c)

FIG. 3. Squared wave functions for the three marked states from Fig. 2 �2D even quantization�. The states �a� and �c�, which correspond
to the square and the diamond, respectively, are taken from the regular part of the lattice �the 1995th and 1885th level, respectively� and
exhibit well pronounced quantum scar effects. The state �b�, associated with the bullet, belongs to the chaotic part �the 1890th level� and
shows an ergodic behavior.
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the other hand, overlapping regular areas form a regular area
again.� While there is no doubt that these observations dem-
onstrate limitations of the Peres method, one can improve its
resolution by employing several incompatible Peres opera-
tors. Indeed, Fig. 2 �right� shows that for the three high-
lighted states a better choice of Peres operator is P=H�.

Figure 4 displays Peres lattices for 2D even quantization
with different classicality constant �. In Part I, we have
shown that by tuning the value of � one scales the absolute
density of quantum states but does not affect statistical prop-
erties of the spectra. Here we want to show that these
changes do not influence the main features of the Peres lat-
tice. The variations in the lattice with �=4,25, 100�10−4

for both Peres operators are observed in rows �a�–�c� of Fig.
4. Note that B=1.09 is a value of the control parameter for
which the system exhibits very rich structures with well pro-
nounced minima and maxima of the dependence classical
regular fraction f reg on energy �see the insets�. A decrease in
the � value increases the density of states �the system gets
closer to the classical limit� and serves as a zoom into the sea
of levels: one can see finer details of the lattice but �because
of computational limits� a smaller fraction of the spectrum is
available. For a comparison, the box in all panels of the same
column encloses a fixed region of energy�P average. It is

seen that the structures observed in the lattice become
wealthier in details as � decreases, but the overall appear-
ance of the relevant part of the lattice remains the same.

B. Links to classical dynamics

In Part I, we investigated the connection between the clas-
sical measure of regularity f reg �the fraction of the regular
phase-space volume� and the quantum measure represented
by �1−��, where � stands for the Brody parameter. Our
conclusion was that both measures entail qualitatively the
same energy-dependent behavior, irrespective of the method
of quantization. In the present context, new questions appear,
namely: how strong is the correspondence between the be-
havior of f reg and the character of Peres lattices? Or more
specifically, is there a correlation between ordered �disor-
dered� parts of the lattice and regular �chaotic� parts of the
phase space?

In order to find an answer we plot figures showing the
dependence f reg�E� in the insets of Fig. 4. Pure visual inspec-
tion discloses strong correlations between the increase in f reg
and the occurrence of regular domains in Peres lattices for
both operators �L2� and �H��.

Following the dependence in row �a� of Fig. 4 we find
f reg=1 for negative energies and observe fully regular pat-

E

〈L 〉 〈H' 〉2

(a)

(b)

(c)

FIG. 4. �Color online� The GCM Peres lattices for B=1.09 and different values of the Planck constant: �=0.02 �a�, 0.05 �b�, and 0.1 �c�.
The 2D even quantization was employed with the same Peres operators as in the previous figures. Lower values of � yield denser spectra,
which can therefore be evaluated only in narrower energy intervals �numerical limitations�. The box �red online� encloses the same area in
the three panels of each column. Insets show the dependence of the classical regular fraction f reg on energy �see Part I �1�� for the energy
domain displayed in each row. One can observe that the f reg dependences are correlated with ordered and disordered areas in the corre-
sponding lattices in both columns.
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terns in the corresponding part of both lattices. This is the
domain where the quadratic-well approximation of the GCM
potential is valid. Note that the regular pattern at low ener-
gies is present in Peres lattices for all values of parameter B.
At energies just below E=0 the classical regularity begins to
drop �forming a small fold at E�0�, which is manifested in
the lattice of �L2� by a band of disordered points with a small
tail penetrating to the regular area at zero energy. Passing
through the totally chaotic area with f reg=0 at 1�E�3, the
regularity begins to rise again. This is accompanied by a
formation of a new regular pattern in the lattices at large
values of �L2� or small values of �H��.

One can switch to rows �b� and �c� of Fig. 4 and continue
in the same manner. A remarkable phenomenon appears at
E�35, where f reg reaches for a while the value of full regu-
larity. This somewhat surprising behavior was discovered in
Ref. �3�. Here we may trace the signatures of regularity in
the two Peres lattices. For instance, the lattice in the lower
right panel gets locally contracted to a narrow interval of
�H�� and develops a highly organized pattern for E�35. Dis-
tortions of this pattern start appearing at energies E�50,
where the classical regularity is decreasing again. Let us note
that for energies much above the range shown in Fig. 4, the
order increases to the asymptotic value f reg→1 for all values
of parameter B. This is due to the �4 term of the potential
which becomes increasingly important at high energies, gen-
erating predominantly regular dynamics.

As explained in Sec. II, Peres invariants can be introduced
on both classical and quantum levels. One can determine the
classical analog of the Peres operator P and calculate its
average �P�c over an arbitrary trajectory. In this way, a func-
tion in the classical phase space can be constructed for any
Peres invariant. In the right-hand panel of Fig. 5, the function
�L2�c is shown �coded in shades of gray� for a certain values
of the control parameter and energy on the y=0 section of
the phase space. Remind that �x ,y� represent Cartesian coun-
terparts of the polar coordinates �� ,��, while �px , py� are the
corresponding momenta, and that there is no difference be-
tween 2D and 5D cases on the classical level �1�.

On the left-hand side of Fig. 5, the standard Poincaré
section is plotted for 100 crossing trajectories. We observe
that the chaotic area identified in the Poincaré section is cov-
ered by one shade of gray in the map of �L2�c. This follows

from the ergodicity of chaotic motions, which ensures that
any vicinity of each point in a chaotic phase-space domain is
visited by a single trajectory. Therefore, almost the whole
domain yields a single value of the classical Peres invariant
�with exceptions including periodic orbits that however fill
only a zero-measure subset of the phase space�. On the other
hand, in the regular islands of the Poincaré section the shade
of the �L2�c image gradually changes.

The corresponding Peres lattice was shown in Fig. 2�a�,
with squared wave functions of the selected states depicted
in Fig. 3. The agreement with classical results in Fig. 5 is
remarkable. The trajectory responsible for the “scar” of the
wave function in Fig. 3�a� passes the central regular part of
the phase-space section in Fig. 5 close to �x , px�= �−0.8,0�,
yielding a medium value of �L2�c. Indeed, the respective state
�denoted by the square� is localized in the medium part of the
�L2� Peres lattice. The trajectory contributing to the wave
function in Fig. 3�c� falls to the dark regular regions of the
density plot in Fig. 5, which again corresponds to the value
of �L2� for the respective point �the diamond�. A comparison
of Figs. 5 and 2�a� indicates an excellent correspondence
between the results based on the Poincaré and Peres methods
�if the latter one is supplemented by a classical calculation as
in the right-hand panel of Fig. 5�.

C. Decay of regularity

We return now to Fig. 1 in order to discuss in more detail
the mechanism of the transition from the integrable dynam-
ics at B=0 to the chaotic B�0 regime. As pointed out above,
in the integrable case �row a� the quantity L2 is an integral of
motion and �H�� is identically zero.

Let us look at the curved chains of points apparent in
panel �a� of Fig. 1 �left�. These chains, which begin at
�L2�=0 and lead upward, connect states with a constant sum
N=n�+m�, where n� is the radial quantum number and
m=3m� represents the angular-momentum quantum number
�the latter increases toward the upper end of the chain�. If the
perturbation is turned on, some of the points within the same
chain start moving against each other, forming a kind of
“condensation centers”; see the left panels �b� and �c�. A
detailed inspection discloses that the most affected levels lie
in the short stretches of the chains which are nearly parallel
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FIG. 5. The y=0 section of the classical phase space �coordinate x versus momentum px� for B=0.62 and E=0.2. Left: Poincaré section
formed by crossings of 102 randomly chosen trajectories with the plane of the section �103 crossings for each trajectory�. Right: Density plot
of the Peres invariant �L2� calculated classically across the section �on a mesh of 500�500 points�. Dark and light regions �low and high
values of the Peres invariant, respectively� contain regular trajectories �see the left panel� and simultaneously correspond to regular domains
in the Peres lattice �see Fig. 2�a� at E�0.2, where the regular domains are located at the lower and upper sides of the lattice�.
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with the vertical axis. In other words, the perturbation is
most efficient for the states which are very close in energy
and in the value of �L2�. Indeed, exploiting the perturbation
theory, we can say that if the perturbation matrix element is
nonzero �at B=0, the operator H� couples only the states
differing in m� by �1�, the proximity of levels leads to an
increased mixing. This in the present case shows up as an
attraction to a common value of �L2� for the whole bunch.
For B=0 the vertical stretches are developed in the chains
located within the energy interval 0�E�0.4 and, conse-
quently, the corresponding levels in these chains are most
vulnerable if B starts to increase. This is why small pertur-
bations affect first only a very limited part of the lattice, as
observed in panels �b� and �c�.

If we continue increasing the perturbation, more and more
levels become influenced by the interaction. For sufficiently
large values of B, the levels start interacting between neigh-
boring chains and the whole structure gradually breaks
down; see Fig. 1�d�. For B=0.24 �panel �e�� the lattice is
totally disintegrated. We have just reached the most chaotic
parameter region, where only the deepest levels form a regu-
lar lattice due to the validity of the quadratic-well approxi-
mation.

The size of the perturbation can be quantified with the aid
of the other Peres operator, i.e., by the value of �H��, which
is displayed in the right-hand column of Fig. 1. Rows �b� and
�c� help to discover that not only the levels with E�0, but
also also a few of those with E0 become disturbed by a
small perturbation �this was not visible in the left-hand pan-
els�. For E�0, we observe several regular arcs of points at
�H���0 and some more disordered points with �H��0.
Both these groups of points correspond to the “condensation
centers” apparent in the left-hand panel. The �H���0 part of
the lattice contains states with �cos 3��i�0, hence � cen-
tered around values 0, 2�

3 and 4�
3 �saddle points of the poten-

tial�. On the other hand, the �H��0 part collects states with
�cos 3��i0, hence �� �

3 , �, 5�
3 �global minima of the po-

tential�. Examples of both these types of wave functions will
be given later in Fig. 6. It is somewhat surprising that the
more regular part of the lattice is connected with the states
localized in the saddle-point regions, whereas the states lo-
calized around the minima seem to be more chaotic.

For moderate perturbation strengths, great majority of
points in Fig. 1 �right� remains located at �H��=0, indicating
the absence of structural changes. These points correspond to
the unperturbed parts of the lattice in the left-hand column.
As B increases, however, both positive and negative halves
of the �H�� lattice become increasingly populated and finally
the negative �irregular� part captivates absolute majority of
points �row e�. This agrees with the disordered form of the
lattice in the left-hand column.

The changes in the Hamiltonian eigenstates accompany-
ing the above-described evolution of the Peres lattices are
illustrated in Fig. 6. Its first row presents four unperturbed
�B=0� wave functions �probability distributions in the 2D
even quantization�, while the second, third, and fourth rows
demonstrate the effects of perturbation �for B=0.005, 0.01
and 0.05, respectively� on the same states. The states corre-
spond to four successive energy levels, the associated values
of both P averages being given in each case. Note that the

value of � was chosen differently than above, so the states
cannot be directly marked in Fig. 1.

The rightmost column of Fig. 6 represents a state which is
originally far away from the condensation centers in Fig. 1
�left�. Indeed, this state resists the smaller perturbation rather
well. On the other hand, the most pronounced structural
changes at B=0.005 and 0.01 are observed for the states in
the first three columns of Fig. 6. The states in the middle two
columns belong directly to the condensation center of
strongly interacting levels and the state in the leftmost col-
umn is close to it. One clearly observes the breakdown of the
rotational symmetry and a gradual crossover to a trifoliolate
form of the wave functions, particularly for the two states in
the middle. While the states with �H��0 are localized more
around the minima of the potential, the ones with �H���0
dwell more in the saddle-point regions. In the fourth row of
Fig. 6, which corresponds to the irregular lattice at B=0.05,
cf. Fig. 1�c�, all four states are already perturbed. We observe
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FIG. 6. Squared wave functions of four successive eigenstates
�states no. i=52, . . . ,55 at E from 0.059 to 0.076� of the integrable
B=0 Hamiltonian �for �=0.02� in the 2D even quantization �the
first row� and the same states for B=0.005, 0.01, and 0.05 �the
second, third, and fourth rows, respectively�. The respective values
of both P-averages are given in each panel. The first three states
�arranged in columns� are more sensitive to the perturbation than
the fourth one, in accord with the lattices in Fig. 1 �see the text�.
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that the form of the rightmost state has been transmitted to
the third state in the last row and vice versa, as results from
an avoided crossing of both levels.

Finally, it is instructive to look also at the changes in
classical Peres invariants with parameter B. We have calcu-
lated the lower and upper bounds of the classical average
�L2�c and show the results for E=0 in Fig. 7. As we see, the
interval of �L2�c is contracted almost to a single value in the
most chaotic case, B=0.24, where the ergodicity is maximal.
Surprisingly, even the small remnants of tori present there
have the same value of �L2�c. If we step over the most cha-
otic point, several new tori with higher values of �L2� appear,
which results in a widening of the interval between the
bounds. Note that the narrow “neck” in �L2� at E=0 can also
be observed in the quantum Peres lattice in Fig. 1�e�.

D. Quasiregular region

Looking at the form of �L2� and �H�� lattices in row �e� of
Fig. 1, one can notice two characteristic features: �i� The
centroid value of �L2� exhibits roughly a linear increase with
energy E. �ii� The lattice for �H�� grows linearly only at low
energies, while for higher energies it scatters around a
roughly constant average. These types of dependences in
both lattices are qualitatively understandable and remain ap-
proximately valid for all increasingly high values of param-
eter B. Nevertheless, the distribution of regular and irregular
parts within the lattices of the above forms exhibits a high
degree of variability.

At the first sight, one could expect that the increase in the
perturbation strength in the GCM Hamiltonian from �B�=0 to
�B��0 should lead to a monotonous progression of disorder,
as described in the preceding subsection. Although this sce-
nario is typical for many related systems of type �1�, see,
e.g., Refs. �17,18�, it does not apply in the present case.

The GCM is peculiar in two respects. First, as shown in
Ref. �3�, the classical regular fraction f reg for negative ener-
gies converges to unity for asymptotically large values of B,
when the GCM Hamiltonian can be rescaled to the form
H
T+�4+�3 cos 3�. Let us stress that the type of order
observed for E0 in the B→
 limit is totally different from
the B=0 case and that in the asymptotic limit the regularity

fades away at positive energies. Second, the competition be-
tween regular and chaotic dynamical modes gets surprisingly
complex at medium values of �B�. The most important
change in this range takes place around B�0.6, where ex-
tensive regular patterns are established in the Peres lattices at
both low and medium energies; see Fig. 2. �Note that the
ordered dynamics at very high energies is connected with the
dominance of the �4 term of the potential �3�.�

The B�0.6 quasiregular region was briefly mentioned al-
ready in Part I �1�. As shown in Ref. �19�, it is closely related
to a so-called “arc of regularity” observed �20� in the param-
eter space of the interacting boson model �IBM� �21�. Al-
though the IBM is a more sophisticated model of nuclear
collectivity that the GCM, it makes use of a similar language
�involving quadrupole degrees of freedom� and yields com-
parable results. Since its discovery, the IBM arc of regularity
has been subject to several analyses �19,20,22,23�. Some in-
teresting hints have been disclosed, but many questions re-
mained open.

In the GCM case, we observe a phenomenon very similar
to the IBM arc. A comparison of Figs. 1�e� and 2�a� provides
clear evidence for a large increase in regularity between the
two values of B. In fact, the pattern of ordered points, which
dominates in the low-energy part of the lattice at B�0.6,
starts rising already before the maximum of regularity is
reached and persists long after it is left. As an example, we
show in Fig. 8 the �L2� lattices for B=0.52 �panel �a�� and
B=0.78 �panel �b��. It is obvious that the low-energy parts of
both lattices exhibit a great deal of similarity with Fig. 2�a�.

The mechanism behind the E0 pattern of ordered points
visible in all �L2� lattices at medium and large values of �B� is
connected with a competition of two types of vibrations. To
show this, we apply the quadratic-well approximation, valid
for �B��0 at low energies above the potential minimum. It
relies on the local use of a 2D oscillator potential,

V � V0 +
k�

2
�� − �0�2 +

k�

2
�2�� − �0�2, �8�

where �0 and �0 stand for a position of the potential mini-
mum, and k�= � �2V

��2 �0 and k�=�0
−2� �2V

��2 �0 for the rigidity of the
oscillator in � and � directions.

It turns out that the horizontal chains of points with in-
creasing energy, which can be observed in the lattices in
Figs. 2�a�, 8�a�, and 8�b�, correspond to states with a growing
number of �-vibration quanta n�. The vertical arrangement
of these chains, on the other hand, follows an increasing
number of �-vibration quanta n�. Such an interplay of vibra-
tional modes in both � and � directions represents the basic
organization principle for the low-energy part of the �L2�
lattices for �B��0. Remind that this is essentially different
from the B=0 situation, when the lattice was determined by
vibrational modes in � and rotational modes in �. An ex-
ample of a ��� vibrational state �its squared wave function�
is shown in the inset of Fig. 8�a�.

A simple calculation shows that at B=2 /3�0.66 one gets
k�=k�=12. We encounter a resonance of the local oscillator
frequencies in � and � directions, which leads to an addi-
tional regularization of the lattice. Interestingly, due to mu-

〈L 〉
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c

B

FIG. 7. The lower and higher bounds �solid and dashed lines,
respectively� of the classical Peres average �L2�c for E=0. The
bounds almost touch each other at B=0.24, where the most chaotic
region is located. Fluctuations of the lower bound near E=0.5 are
caused by the appearance and disappearance of small unstable tori.

QUANTUM CHAOS IN THE …. II. PERES LATTICES PHYSICAL REVIEW E 79, 066201 �2009�

066201-9



tual interactions between levels the degeneracy in a wide
interval of energies becomes maximal already at B=0.62,
where the main peak of regularity takes place. The resonance
is responsible for the “condensation” of the �L2� lattice at
E0 along a nearly horizontal line of multiple points appar-
ent in Fig. 2. Although in Fig. 1 a similar phenomenon was
linked to initiating the first seeds of disorder, its role in the
present case is rather opposite: it helps to clean up some
disarranged parts of the lattice. Let us stress that the proxim-
ity of levels implies rapid structural changes with no imme-
diate relation to chaos. It can indicate a crossover to chaos as
well as emergence of order �imagine the scenario from Sec.
IV C played in the reverse direction—with B decreasing to
0�.

It needs to be stressed that at B�0.6 the patterns emerg-
ing in the Peres lattice and in wave functions go far beyond
the quadratic-well approximation. Indeed, as shown in Fig.
2, the ordered part of the lattice exceeds to medium energies,
where the approximation deteriorates and even becomes
completely invalid �this is certainly so at energy Esad of a
saddle point of the potential, where the three regions around

the minima merge together and form a single connected
area�. Surprisingly, even at E�0�Esad a large fraction of
states still keeps the form with well distinguished � and �
vibrations. This is exemplified by a selected wave function in
the inset of Fig. 8�b�, where the vibrational pattern remains
confined around the potential minimum despite the fact that
the energetically accessible domain unifies all three sectors.
Note that peculiar ��� vibrational structures connecting all
sectors can be found in even higher eigenstates; cf. Fig. 3�c�.
One may therefore assume that the observed regular island at
B�0.6 is due to a fortunate coincidence of resonating � and
� modes in both E0 and E�0 domains.

Qualitatively the same explanation is valid also in the
IBM. There, the degeneracy of � and � vibrations was no-
ticed empirically �23� and later supported by theoretical ar-
guments �19�. A detailed analysis of the � and � modes in
the IBM framework is in preparation �24�. The present work
provides an independent verification of this mechanism in
the simpler GCM case. It also clearly manifests the influence
�probably specific for the present form of potential� of the
low-energy ordering of states on the spectrum at higher en-
ergies, which is significant for the large extension of the
regular region.

V. CONCLUSIONS

In this paper, we have continued and exceeded the work
presented in Part I �1�, whose main purpose was to test the
Bohigas conjecture for different quantization schemes under
the condition of a strong variability of chaotic measures with
energy. We have revitalized an almost 35 years old method
by Peres �6� and showed its great potential in the field of
quantum chaos and even beyond.

Peres lattices provide an excellent viewpoint to the land-
scape around the border between classical and quantum
physics. This is so especially for systems with two degrees of
freedom whose lattices can be drawn as two-dimensional
diagrams, in analogy with planar Poincaré sections of such
systems. If applied within the domain of quantum chaos,
Peres’ method enables one to distinguish regular and chaotic
behaviors on the level of individual states or subsets of states
within the same energy interval. This is in contrast to tradi-
tional methods based on spectral statistics that assign the
same degree of chaos to all levels within the same interval.

Quite naturally, there are some limitations of the method.
As seen, regular and irregular parts of the lattice can in some
cases be superimposed on each other, which hinders their
correct resolution. In particular, the distinction of chaotic
states may be ambiguous since a superposition of two or
more regular patterns may seem irregular. Nevertheless, we
showed that this problem can in principle be bypassed by
constructing more lattices with different Peres operators.
Their optimal choice, which unavoidably depends on the
concrete system under consideration, should be subject to
further study. Although the Peres’ method does not directly
yield a calculable measure of quantum chaos, it represents an
important indicator providing new insights into the origin of
chaotic behavior.

However, our intention in this paper was to go even be-
yond the scope of quantum chaos, demonstrating that Peres
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FIG. 8. Peres lattice for �L2� in 2D even quantization
��=5�10−3� at B=0.52 �a� and 0.78 �b�. We see that the regular
pattern is present before and after the main peak of regularity at
B=0.62, cf. Figure 2�a�. Both panels contain the same number of
states. The insets depict selected wave functions �diamonds in the
respective lattices� demonstrating the presence of � and � vibra-
tions �only the sector around the minimum �=4� /3 is shown in
both cases�. The state in the upper panel �i=17� is at E=−0.449, the
lower one �i=1292� at E=0.021.
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lattices represent an extremely efficient and economic tool
for studying significant features in large ensembles of eigen-
states across the spectrum. Relevant properties of the wave
functions can be read off from the expectation values of suit-
ably chosen Peres operators. Instead of analyzing each indi-
vidual eigenstate and its wave function, one may look at the
associated Peres lattice where the desired information is con-
tained in a synoptical way. As an example, we were able to
closely follow the breakdown of integrability of the system
and the rise of a new type of order. We believe that the
results presented here may encourage similar studies in other
systems.

The present work completes our long-term effort to map
chaotic properties of the geometric collective model of
nuclear physics �1,3�. A great advantage of the geometric
model �and also of the related interacting boson model� is the
apparent conceptual simplicity encoding strikingly rich com-

plexity of dynamics. Let us note that the above simplified
models capture the main phenomenological features of
nuclear collectivity which are presently beside a fully micro-
scopic description. The study of disordered collective dy-
namics within these models may be considered as an attack
to the problem of chaos in many-body systems from the
direction perpendicular to the mean-field approach.

An interactive survey of our main results can be found at
the website �25�.
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